

Rapid Prediction of Installed Jet Noise From RANS

James Bridges
NASA Glenn Research Center

25th AIAA/CEAS Aeroacoustics Conference Delft, The Netherlands 20 May 2019

Supported by NASA Commercial Supersonic Technology Project and NASA collaborators in obtaining flow and acoustic data.

Motivation

- Need for speed in evaluating exhaust concepts for noise
 - Empirical Fast; Can't account for strange nozzle geometries
 - RANS Quick enough? Steady acoustic sources, no resonances
 - LES Slow; Too cumbersome
- How to speed up RANS-based methods?
 - Make import/creation of geometry easy → Tie to solid modeling software
 - Automate grid generation, refinement → Cartesian methods
 - Make acoustic code robust, fast.
- Acoustic analogy codes for RANS typically have two components source and propagation (Green function)
 - Solving for Green's function is expensive, requires smooth solutions, different grids than RANS
 - Adding surfaces further complicates Green's function solutions
- Looking for 'good enough' answers for design work—noise is measured in dB!

Motivation

Heuristic two-component model

Small-scale source model development

Assumption: 'Small-scale' noise contributed by independent sources SS_n

Small-scale source SS_n

- Both momentum SS_m and enthalpy SS_e source terms modeled (Khavaran 2009)
 - Enthalpy proportional to deviation of location temperature ratio relative to ambient, squared.

$$SS_{n}(f) = SS_{mn}(f) + SS_{en}(f),$$

$$SS_{mn}(f) = C_{ssm} \left(\frac{\rho_{n}}{\rho_{\infty}}\right)^{2} \kappa_{n}^{7/2} 10^{\left(-A_{ssm}\left(\ln\left(B_{ssm}\frac{\varepsilon_{n}/\kappa_{n}}{f}\right)\right)^{2}\right)} V_{n}$$

$$SS_{en}(f) = C_{sse} \left|\frac{\rho_{n}}{\rho_{\infty}} - 1\right|^{2} \kappa_{n}^{5/2} 10^{\left(-A_{sse}\left(\ln\left(B_{sse}\left(\frac{\rho_{n}}{\rho_{\infty}}\right)^{1/2}\frac{\varepsilon_{n}/\kappa_{n}}{f}\right)\right)^{2}\right)} V_{n}$$

- Take advantage of Greens function at 90° being nominally freespace.
- Coefficients A_{ssm} , A_{sse} , B_{ssm} , B_{sse} , C_{ssm} , C_{sse} determined by trial and error fit to jet noise database at polar angle = 90°
- NASA SHJAR database for simple round nozzle (SMC000) covers
 - $-0.5 < U/c_{\infty} < 1.5.$
 - unheated $< T_s/T_{\infty} < 2.7$.

Small-scale directivity model

• Spectra anchored at 90°, derive directivity model for polar angle $\Delta_S(\phi) = PSD(f^*, \phi)/PSD(f^*, 90^\circ)$

$$DS(\phi; Ma) = 10^{(a*Ma+b)*(\phi-90)} * 0.5 * \left(1 - \tanh\left(\frac{\phi - \phi_{s0}}{\phi_{s1}}\right)\right)$$

Large-scale source model

Spatial filter Ψ to select TKE where lengthscales match dominant modes (~jet diameter):

$$\Psi(Djet) = 10^{\left(-\left(\ln\left(\frac{\kappa^{3/2}/\varepsilon}{Djet}\right)\right)^2\right)}$$

Similar spectral model as small-scale source, different scaling with TKE

$$\begin{split} SL_{n}(f) &= SL_{m_{n}}(f) + SL_{e_{n}}(f), \\ SL_{m_{n}}(f;Djet) &= C_{slm} \left(\frac{\rho_{n}}{\rho_{\infty}}\right) \kappa_{n}^{9/2} 10^{\left(-A_{slm} \left(\ln\left(B_{slm} \frac{\varepsilon_{n}/\kappa_{n}}{f}\right)\right)^{2}\right)} 10^{\left(-\left(\ln\left(D_{slm} \left(\frac{\rho_{n}}{\rho_{\infty}}\right) \frac{\kappa^{3/2}/\varepsilon}{Djet}\right)\right)^{2}\right)} V_{n}, \\ SL_{e_{n}}(f;Djet) &= C_{sle} \left|\frac{\rho_{n}}{\rho_{\infty}} - 1\right|^{2} \kappa_{n}^{7/2} 10^{\left(-A_{sle} \left(\ln\left(B_{sle} \frac{\varepsilon_{n}/\kappa_{n}}{f}\right)\right)^{2}\right)} 10^{\left(-\left(\ln\left(D_{sle} \left(\frac{\rho_{n}}{\rho_{\infty}}\right) \frac{\kappa^{3/2}/\varepsilon}{Djet}\right)\right)^{2}\right)} V_{n} \end{split}$$

Large-scale directivity model

- Dramatic directivity is hallmark of large-scale source $\Delta L(\phi) = PSD(f_{peak}, \phi)/PSD(f_{peak}, \phi_{peak})$
- ϕ_{peak} dependent on Ma, Ts/T_{∞} -- obtain from integral measure of jet plume.
- Reasonable fit by Gaussian in ϕ

$$DL(\phi) = e^{-\left(\left((\phi - \phi_{l0})/\phi_{l1}\right)^{2}\right)} \qquad \phi_{l0} = -11(Ma - 1) - 4(TsR_{ref} - 1) + 158$$

Directivity modified by solid surfaces

- Shielding/Reflection of source behind planar surface estimated by method of Maekawa (1968)
- Assumes no flow!
- DH is attenuation factor relative to free-space Green's function.

Total Model

Contribution of each nth cell in CFD RANS solution to far-field noise:

$$\begin{split} PSD3(x,y,z,f,\phi) &= \\ DS(\phi) \sum_{n} SS_{n}(x,y,z,f) \ DH_{n}(x,y,z,f,\phi) \\ &+ \ DL(\phi) \sum_{n} SL_{n}(x,y,z,f) \ DH_{n}(x,y,z,f,\phi) \end{split}$$

3-D source density to observer ϕ at frequency f

$$PSD2(x, y, f, \phi) = \int PSD3(x, y, z, f, \phi) dz$$
$$PSD1(x, f, \phi) = \int PSD2(x, y, f, \phi) dy$$
$$PSD(f, \phi) = \int PSD1(x, f, \phi) dx$$

Phased array view of source distribution

Axial source distribution

Spectral directivity of far-field noise

Validation

NASA

• Single-stream jets of various temperatures

Dual-stream coaxial jets with heat

• Single-stream jets from nozzles with enhanced mixing features

• Jets in proximity to surfaces (excluding the edge-induced noise).

Simple round jets, single-stream, no plug; heated

Single-stream round hot jets

- Tanna matrix: 0.5 < Ma < 1.8; unheated < TsR < 2.7
- RANS using Mentor Graphics cartesian mesh method (SolidWorks Flow Simulation)

Bridges, J., and Wernet, M. P., "The NASA Subsonic Jet Particle Image Velocimetry (PIV) Dataset,"

Podboy, G. G., "Jet-Surface Interaction Test: Phased Array Noise Source Localization Results,"

Single-stream, shock-free round hot jets

Absolute error in far-field spectral directivity

- mSrc model works better than empirical models over large
 - Suffers errors in predicting peak frequency at supersonic

range of *Ma, TsR* where *TsR* <

Overpredicts far aft angles

2, *Ma* < 1.2

conditions

 Transition between small- and large-scale (blue dot) worse at high temperatures.

Brown, C. A., and Bridges, J., "Small Hot Jet Acoustic Rig Validation,"

Single-stream, shock-free round hot jets Absolute error in far-field spectral directivity

dPSD(dB)

5

0

1.8

 ANOPP/ST2 empirical model has greater errors relative to SHJAR database.

Coaxial dual-stream, separate flow, with plug; hot core

- Computed flow fields
- Differences in turbulence of single- and dual-stream jets, plugged nozzles
- Peak TKE shifts downstream with increasing velocity ratio

Source distributions

- Comparison of PSD2 with phased array data for axisymmetric dual-stream jet with external plug
- Similar distributions, except at high frequency where phased array finds source more tightly focused around plug
 - Need better Green's function for plug nozzle?

Vc/Vb = 1.2.

 $\phi = 90^{\circ}$

Absolute error in far-field spectral directivity

NASA

- Cases cover 1.25 < Vc/Vb < 2.3
- Generally within ±2dB
- Underpredicts low freq
- Overpredicts high freq
 - Wrong TKE on plug?

Absolute error in far-field spectral directivity

- ANOPP/ST2 empirical model has comparable errors relative to NATR database.
- Underpredicts high freq
- Why?

Chevron jets, single-stream, no plug

Simple chevron nozzles

CFD validation

RANS accurately predicts change in TKE distribution, especially near chevrons

Simple chevron nozzles

Acoustic validation

- Source distributions for round and chevron nozzles:
 - mSrc picks up change in spatial distribution of high frequency noise generated by chevrons
- Far-field noise:
 - mSrc does not predict as much high freq increase/low freq reduction as experiment.
- Since TKE amplitude and source location seem correct, possibly efficiency of TKE-->acoustic energy is off.
 - Chevrons change anisotropy of TKE

Dougherty, R. P., and Podboy, G. G., "Improved Phased Array Imaging of a Model Jet"

Bridges, and Brown, C., "Parametric Testing of Chevrons on Single Flow Hot Jets,"

Installed jets, single-stream, no plug

Jet-Surface Interaction

CFD validation

- Check on validity of mSrc's shielding/reflection model
- Will not predict scattering of turbulent energy into sound by trailing edge of plate.
- SWFS, like other RANS codes, generally predicts TKE of jet near plate well, but underpredicts TKE aft of plate when jet is on the plate.

PIV: Brown, C. A., and Wernet, M. P., "Jet-Surface Interaction Test: Flow Measurement Results"

Jet-Surface Interaction

Acoustic validation

- Difference in far-field noise from Ma=0.9, unheated jet, without minus with surface.
- Shielding is overpredicted at highest frequencies, but within 2dB for most frequencies of interest.
- Be suspicious of shielding > 5dB!

90°

120°

60°

Summary

- mSrc is robust numerical model to be used with RANS to predict installed jet noise.
 - Can be traced to acoustic analogies, but developed empirically.
 - Uses simple models for Green's function for speed, robustness.
- Assumptions/Limitations
 - Axisymmetric sound field
 - Shock-free jets
 - No scattering of TKE into sound by edges
- Accurate to ±2dB for most applications studied.
- Provides intermediate, diagnostic results
- Works with any RANS code.
- When coupled with SolidWorks[™] Flow Simulation RANS solver, mSrc can provide jet noise prediction from geometry within few hours on laptop computer.
- Within few hours on laptop computer.
 Used in designing installed nozzle concepts for exploration of integrated low-noise propulsion systems.

EPNL from Baseline, uninstalled

Bridges, J. "Noise measurements of a low-noise top-mounted propulsion installation for a supersonic airliner"